

Vince Asbridge, Founder & President, SANBlaze

Haiyan Lin, Sr. Software Engineer, SANBlaze

Verification of ZNS

Authors

White Paper

Zoned Namespaces

Verification for SSD Drives

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 1

Table of Contents

List of Figures .. 2

1. Introduction .. 3

2. Understanding ZNS ... 3

2.1 Why ZNS for SSDs? .. 3

2.2 ZNS Model and State Machine ... 4

2.3 ZNS Commands ... 4

2.3.1 Zoned Admin Command Sets... 4

2.3.2 Zoned I/O Commands .. 5

3. ZNS Verification by SANBlaze.. 6

3.1 Zone Management/Append Examples with the SANBlaze Platform 6

3.1.1 Zone Management Receive ... 6

3.1.2 Zone Management Send .. 7

3.1.3 Zone Append .. 8

3.2 Multiple Threads I/O in ZNS Examples with SANBlaze Platform .. 9

4. SANBlaze ZNS Qualification Suite ... 11

4.1 TP4053 Qualification ... 11

4.2 TP4056 Qualification ... 16

4.3 TP4076 Qualification ... 16

4.4 I/O and Others ... 19

5. ZNS Qualification with SANBlaze sb_cert ... 19

5.1 Choose ZNS Scripts to Run .. 19

5.2 Start Testing .. 20

5.3 Test Results Review ... 20

Summary ... 21

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 2

List of Figures

Figure 1: Zoned Namespace 3
Figure 2: Zone State Machine 4
Figure 3: Scalability with Multiple Writers 5
Figure 4: Help Info for Zone Management Receive 6
Figure 5: Help Info for Zone Management Send 7
Figure 6: Help Info for Zone Append 8
Figure 7: Help Info for Start Test and Stop Test 9
Figure 8: Trace of Multiple Threads I/O in zoned namespace 10

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 3

1. Introduction

SANBlaze has announced the availability of ZNS (Zoned Namespace) verification that allows you to
quickly and effectively test and validate the ZNS implementation of your solid state drives (SSDs). This
white paper introduces ZNS and describes how to verify that your SSDs have implemented all ZNS
features correctly using the SANBlaze SBExpress test and validation system.

2. Understanding ZNS

NVMe™ Zoned Namespace (ZNS) is a technical proposal under standardization by the NVM Express™
organization. It divides the logical address space of a namespace into zones. Each zone provides a
Logical Block Address (LBA) range that must be written sequentially and if written again must be
explicitly reset. This operation principle allows created namespaces that expose the natural boundaries
of the device and provides offload management of internal mapping tables to the host.

2.1 Why ZNS for SSDs?

SSDs are intrinsically zoned devices due to flash characteristics. A page is the smallest area of the NAND
flash memory that supports a write operation and consists of all the memory cells on the same
WordLine. An erase block is the smallest area of the flash memory that can be erased in a single
operation. Page and block sizes differ per manufacturer and flash generation. For example, 19nm 64Gb
MLC flash contains 16KB page size and 4MB block size. 16KB page size corresponds to 16,384 bytes that
are dedicated for data and 1,280 bytes that are available for control and Error Correction Code (ECC)
information.

NAND flash technology has evolved from SLC (Single-Level Cell, one bit per cell) to MLC (Multi-Level Cell,
2 bits per cell), then to TLC (3 bits per cell) and the current QLC (4 bits per cell). SLC NAND provides
faster write speed and longer write endurance (around 30,000 – 50,000 Program/Erase Cycles) but is
more expensive. MLC NAND offers a larger capacity, twice the density of SLC but with less endurance
(around 3,000 Program/ Erase Cycles). TLC and QLC increase capacity significantly but at the cost of
much less endurance (maybe around 300 Program/Erase Cycles), lower performance, and the need for
more DRAM to map the higher capacity. DRAM is the highest cost after NAND in a typical SSD.

ZNS introduces a new type of NVMe drive that provides several benefits over traditional SSDs. It divides
one namespace into multiple zones and only allows sequential write in each zone.

Figure 1: Zoned Namespace

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 4

SSDs cooperate using distributed FTL for the sequential access and eliminate multiple layers of
indirection. No complex topology provisioning is needed because zones are logical. ZNS reduces write
amplification, improves internal data movement, improves wear reduction, improves latency outliers
and throughput, reduces DRAM in SSD (smaller L2P) and reduces the need for media over-provisioning.
With the zones aligned to the internal physical properties of the NAND flash, several inefficiencies in the
placement of data can be eliminated. In particular, the problem commonly known as the log-on-log
challenge is naturally solved.

2.2 ZNS Model and State Machine

The ZNS model is similar to ZBC (Zoned Block Commands) and ZAC (Zoned ATA Commands) for SMR
HDDs, but the interface is optimized for SSDs to align with media characteristics (i.e., aligned fixed zone
size to NAND block sizes, and aligned variable zone capacity to physical media sizes). There are 7 states
defined for ZNS as well: Empty, Full, Implicit Open, Explicit Open, Closed, Read Only and Offline. Valid
transitions between each state can be changed by the NVMe Write, Zone Management Command
(Open, Close, Finish, Reset) and Device Resets as shown in the zone state machine below.

Figure 2: Zone State Machine

2.3 ZNS Commands

ZNS commands include Zoned Admin Command Sets and Zoned I/O Commands.

2.3.1 Zoned Admin Command Sets

The NVMe – TP 4053 Zoned Namespaces 2020.03.19 – Final specification provides specific additions to
the ZNS Admin Command Set as follows:

• Identify Namespace Data Structure (TBD – specification not complete)

• Identify Controller Data Structure (TBD – specification not complete)

• Asynchronous Events Information

• Log page 0xBF

• Set Feature (Asynchronous Event Configuration)

• Sanitize

• Controller Architecture (Administrative Controller)

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 5

2.3.2 Zoned I/O Commands

The NVMe – TP 4053 Zoned Namespaces 2020.03.19 – Final specification provides specific commands
for the Zoned Namespaces Command Set as follows:

• Flush

• Write

• Read

• Write Uncorrectable

• Compare

• Write Zeroes

• Dataset Management

• Verify

• Reservation Register

• Reservation Report

• Reservation Acquire

• Reservation Release

• Copy

• Zone Management Send

• Zone Management Receive

• Zone Append

Most commands are defined in the NVMe specification v1.4 except the “Zone Management Send,”
“Zone Management Receive” and “Zone Append” which are new.

Each zone is allowed to sequentially write only. If a sequential write in one zone in an SSD has a Queue
Depth > 1 then it means multiple writes per zone, and it will involve significant lock contention and
affect write performance. The Benchmark below shows multiple writes to a zone has low scalability, and
one write per zone generates good performance. But write performance is improved by writing to
multiple zones. Using the “Zone Append” command that appends data to a zone with an implicit write
pointer (without defining the offset) improves performance significantly. The SSD returns an LBA where
data was written in the zone and it will allow a higher Queue Depth (no host serialization).

Figure 3: Scalability with Multiple Writers

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 6

3. ZNS Verification by SANBlaze

The SANBlaze engineering team has incorporated ZNS testing into its SBExpress platform, and we are
proud to be the industry’s first to provide ZNS testing and validation to our customers. SANBlaze
Application Support for ZNS includes Certified by SANBlaze pre-developed test cases that allow users to
start validating ZNS support and capability right out of the box. Test cases support the following
functionality:

• Support all Zoned Admin Command Sets and Zoned I/O Command Sets defined in the NVMe –
TP 4053 Zoned Namespaces 2020.03.19 – Final specification in our SBExpress GUI, command
line interface, XML API interface, and Python wrapped API interface for test automation.

• Customized Linux driver to handle ZNS state machine transition and sequential write
requirement in each zone.

• Support multiple threads I/O running in the zones of ZNS in parallel with high throughputs. Each
zone can be tested using write, read, compare, and append as needed. Each zone will be reset at
the start, and then later when finished at the end.

• Namespace management for ZNS.

• Negative testing through scripts to test all ZNS features.

3.1 Zone Management/Append Examples with the SANBlaze Platform

3.1.1 Zone Management Receive

Figure 4: Help Info for Zone Management Receive

>>> t108.zone_management_receive() # List all zones with default input arguments

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x0000000000003B98

 Zone_Descriptor_0:

 Zone_Type = 0x02

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 7

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000000

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000004000

 Write_Pointer = 0x0000000000004000

. . .

>>> t108.zone_management_receive(receive_action=0x10000) # Report zone structure in data buffer

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x000000000000003F

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000000

. . .

3.1.2 Zone Management Send

Figure 5: Help Info for Zone Management Send

>>> t108.zone_management_send() # open zone 0 with default input arguments

Command ZoneManagementSend passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

Command Completion Queue Status is decoded as follows:

 CommandSpecific = 0x00000000

 Reserved0 = 0x00000000

 SQ_Head_Pointer = 0x0004

 SQ_Identifier = 0x0001

 Command_Identifier = 0x07CB

 Status_Field:

 PhaseBit = 0x01

 StatusCode = 0x0000

 StatusCodeType = 0x00

 Reserved = 0x00

 MoreInformation = 0x00

 DoNotRetry = 0x00

>>> t108.zone_management_receive() # List all zones with default input arguments

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x0000000000003B98

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 8

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x30

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000000

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000004000

 Write_Pointer = 0x0000000000004000

. . .

3.1.3 Zone Append

Figure 6: Help Info for Zone Append

>>> t108.zone_append() # zone append LBA 0 in zone 0 with default input arguments

Zone append data pattern 0xa5 to starting LBA 0x0 with 0x1 LBAs

0000 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

. . .

Command Completion Queue Status is decoded as follows:

 CommandSpecific = 0x00000000

 Reserved0 = 0x00000000

 SQ_Head_Pointer = 0x0006

 SQ_Identifier = 0x0001

 Command_Identifier = 0x0704

 Status_Field:

 PhaseBit = 0x01

 StatusCode = 0x0000

 StatusCodeType = 0x00

 Reserved = 0x00

 MoreInformation = 0x00

 DoNotRetry = 0x00

>>> t108.zone_management_receive() # List all zones with default input arguments

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x0000000000003B98

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x30

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 9

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000001

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000004000

 Write_Pointer = 0x0000000000004000

. . .

3.2 Multiple Threads I/O in ZNS Examples with SANBlaze Platform

Figure 7: Help Info for Start Test and Stop Test

>>> t107.zone_management_receive(receive_action=0x10000) # Report zone structure in data buffer

Command ZoneManagementReceive passed on port 0 target 107 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x000000000000003F

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000000000

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 10

 Write_Pointer = 0x0000000000000000

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000020000

 Write_Pointer = 0x0000000000020000

. . .

>>>t107.get_vlun_start_test(test_type='Compare',threads=4,blocks=64)#Start 4 threads Compare test

<result>

 <test>

 <status>0</status>

 <test_id>Compare_2</test_id>

 <index>1</index>

 </test>

</result>

>>> t107.zone_management_receive(receive_action=0x10000) # Report zone structure in data buffer

Command ZoneManagementReceive passed on port 0 target 107 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x000000000000003F

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0xE0

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x00000000FFFFFFFF

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0xE0

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000020000

 Write_Pointer = 0x00000000FFFFFFFF

. . .

>>> t107.get_vlun_stop_test(test_id='Compare_2') # Stop the 4 threads Compare test above

<result>

 <status>0</status>

</result>

The trace from the SANBlaze platform shows that the 4 threads are running as follows: Each thread is
running in one zone, so 4 threads are running in 4 zones. Once complete the first 4 zones begin running
on the next 4 zones until they are stopped by user or complete the full test.

Figure 8: Trace of Multiple Threads I/O in zoned namespace

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 11

4. SANBlaze ZNS Qualification Suite

There are 3 major technical proposals for ZNS so far as follows:

• TP4053

• TP4056

• TP4076
The current SANBlaze ZNS qualification suite includes 175 scripts to cover all sections in these 3
technical proposals, and has added some I/O tests to check data integrity of all zones as well as I/O
performance measurement.

4.1 TP4053 Qualification

TP4053 defines Zoned Namespaces and the associated Zoned Namespace Command Set. SANBlaze has
developed 118 scripts to cover the TP4053 qualification.

Script Name Test Description

ZNS_01.01.01_IdentifyZNSNamespace.sh Zoned Namespace Command Set Identify Namespace Data Structure (CNS
05h)
1. Verify structure is returned and is of correct size
2. Verify reserved bytes are reserved
3. Report details of data structure

ZNS_01.01.02_IdentifyZNSController.sh Zoned Namespace Command Set Identify Controller Data Structure (CNS
06h)
1. Verify structure is returned and is of correct size
2. Verify reserved bytes are reserved

ZNS_01.01.03_IdentifyController.sh Identify Controller Data Structure, I/O Command Set Independent (CNS 01h)
1. Check bit value and report its status

ZNS_01.05.02_AsyncEvents-NoAck.sh Case 2:
1. Issue async event
2. Verify each described action doesn't cause event to be acknowledged

ZNS_01.04.01_GetLogPage.sh 1. Issue every applicable log page on ZNS and verify it's successful

ZNS_01.06.01_Sanitize-0b-XXb-Yb-Zb.sh Case 1: Fig. 18 row 1

ZNS_01.06.02_Sanitize-1b-00b-0b-Zb.sh Case 2: Fig. 18 row 2

ZNS_01.06.03_Sanitize-1b-00b-1b-0b.sh Case 3: Fig. 18 row 3

ZNS_01.06.04_Sanitize-1b-00b-1b-1b.sh Case 4: Fig. 18 row 4

ZNS_01.06.05_Sanitize-1b-01b-0b-Zb.sh Case 5: Fig. 18 row 5

ZNS_01.06.06_Sanitize-1b-01b-1b-1b.sh Case 6: Fig. 18 row 6

ZNS_01.06.07_Sanitize-1b-01b-1b-0b.sh Case 7: Fig. 18 row 7

ZNS_01.06.08_Sanitize-1b-10b-0b-Zb.sh Case 8: Fig. 18 row 8

ZNS_01.06.09_Sanitize-1b-10b-1b-1b.sh Case 9: Fig. 18 row 9

ZNS_01.06.10_Sanitize-1b-10b-1b-0b.sh Case 10: Fig. 18 row 10

ZNS_01.06.11_Sanitize-1b-11b-Yb-Zb.sh Case 11: Fig. 18 row 11

ZNS_02.01.01_Flush.sh Case 1: Verify successful command with NSID=X

ZNS_02.07.01_Dataset_Deallocate.sh Case 1: Verify successful command with NSID=X

ZNS_02.07.02_Dataset_Read_Hint.sh Case 1: Verify successful command with NSID=X

ZNS_02.07.03_Dataset_Write_Hint.sh Case 1: Verify successful command with NSID=X

ZNS_02.09.01_ReservationRegister.sh Case 1: Verify successful command with NSID=X

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 12

ZNS_02.10.01_ReservationReport.sh Case 1: Verify successful command with NSID=X

ZNS_02.11.01_ReservationAcquire.sh Case 1: Verify successful command with NSID=X

ZNS_02.12.01_ReservationRelease.sh Case 1: Verify successful command with NSID=X

ZNS_02.02.01_Write.sh Case 1: Verify successful command

ZNS_02.02.02_Write-ZoneBoundaryError.sh Case 2: Zone Boundary Error - verify this error code can be returned

ZNS_02.02.03_Write-ZoneFull.sh Case 3: Zone Is Full - verify this error code can be returned

ZNS_02.02.06_Write-ZoneInvalidWrite.sh Case 6: Zone Invalid Write - verify this error code can be returned

ZNS_02.02.07_Write-TooManyActiveZones.sh Case 7: Too Many Active Zones - verify this error code can be returned

ZNS_02.02.08_Write-TooManyOpenZones.sh Case 8: Too Many Open Zones - verify this error code can be returned

ZNS_02.03.01_Read.sh Case 1: Verify successful command

ZNS_02.03.02_Read-ZoneBoundaryError.sh Case 2: Zone Boundary Error - verify this error code can be returned

ZNS_02.04.01_WriteUncorrectable.sh Case 1: Verify successful command

ZNS_02.04.02_WriteUncorrectable-
ZoneBoundaryError.sh

Case 2: Zone Boundary Error - verify this error code can be returned

ZNS_02.04.03_WriteUncorrectable-ZoneFull.sh Case 3: Zone Is Full - verify this error code can be returned

ZNS_02.04.06_WriteUncorrectable-
ZoneInvalidWrite.sh

Case 6: Zone Invalid Write - verify this error code can be returned

ZNS_02.04.07_WriteUncorrectable-
TooManyActiveZones.sh

Case 7: Too Many Active Zones - verify this error code can be returned

ZNS_02.04.08_WriteUncorrectable-
TooManyOpenZones.sh

Case 8: Too Many Open Zones - verify this error code can be returned

ZNS_02.05.01_Compare.sh Case 1: Verify successful command

ZNS_02.05.02_Compare-
ZoneBoundaryError.sh

Case 2: Zone Boundary Error - verify this error code can be returned

ZNS_02.06.01_WriteZeroes.sh Case 1: Verify successful command

ZNS_02.06.02_WriteZeroes-
ZoneBoundaryError.sh

Case 2: Zone Boundary Error - verify this error code can be returned

ZNS_02.06.03_WriteZeroes-ZoneFull.sh Case 3: Zone Is Full - verify this error code can be returned

ZNS_02.06.06_WriteZeroes-
ZoneInvalidWrite.sh

Case 6: Zone Invalid Write - verify this error code can be returned

ZNS_02.06.07_WriteZeroes-
TooManyActiveZones.sh

Case 7: Too Many Active Zones - verify this error code can be returned

ZNS_02.06.08_WriteZeroes-
TooManyOpenZones.sh

Case 8: Too Many Open Zones - verify this error code can be returned

ZNS_02.08.01_Verify.sh Case 1: Verify successful command

ZNS_02.08.02_Verify-ZoneBoundaryError.sh Case 2: Zone Boundary Error - verify this error code can be returned

ZNS_05.01.01_ZoneMgmtSend-Rsvd.sh Case 1: Set ZSA to each reserved field value and verify error code is returned

ZNS_05.01.02_ZoneMgmtSend-InvalidField-
1.sh

Case 2: If the command SLBA field does not specify the starting logical block
for a zone in the specified zoned namespace and the Select All bit is cleared
to ‘0’, then the command shall be aborted with a status code of Invalid Field
in Command

ZNS_05.01.03_ZoneMgmtSend-InvalidField-
2.sh

Case 3: If the Zone Send Action field specifies Set Zone Descriptor Extension,
and the Zone Descriptor Extension Size field value in the Identify Namespace
data structure is cleared to 0h, then the command shall be aborted with a
status code of Invalid Field in Command

ZNS_05.01.04_ZoneMgmtSend-
WriteProtect.sh

Case 4: If the zoned namespace containing the specified zone is in the write
protection state (refer to Namespace Write Protection section in the NVMe
Base specification), then the command shall be aborted with a status code of
Namespace is Write Protected

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 13

ZNS_05.01.05_ZoneMgmtSend-Abort.sh Case 5: The command may be aborted according to the available Active
Resources and available Open Resources as defined in section 2.5

ZNS_05.01.06_ZoneMgmtSend_ZoneMgmtRcv-
PRPs_SGLs.sh

Case 6: Check if zone management send and receive commands working
with both PRPs and SGLs.

ZNS_05.02.01_ZoneMgmtSend-CloseZone.sh Case 1: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSIO:Implicitly Opened state or the ZSEO:Explicitly Opened
state, the zone shall be is transitioned to the ZSC:Closed state

ZNS_05.02.02_ZoneMgmtSend-CloseZone-
NoChange.sh

Case 2: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSC:Closed state, no change shall be made to the zone
state

ZNS_05.02.03_ZoneMgmtSend-CloseZone-
InvalidTransition.sh

Case 3: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSE:Empty state, the ZSF:Full state, the ZSRO:Read Only
state or the ZSO:Offline state, the command shall be aborted with a status
code of Invalid Zone State Transition

ZNS_05.02.04_ZoneMgmtSend-CloseZone-
ClosedState.sh

Case 4: If the Select All bit is set to ‘1’, then the SLBA field shall be ignored,
and all zones that are in the ZSIO:Implicitly Opened state or ZSEO:Explicitly
Opened state shall be transitioned to the ZSC:Closed state

ZNS_05.03.01_ZoneMgmtSend-FinishZone.sh Case 1: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSE:Empty state, the ZSIO:Implicitly Opened state, the
ZSEO:Explicitly Opened state, or the ZSC:Closed state, the zone shall be
transitioned to the ZSF:Full state

ZNS_05.03.02_ZoneMgmtSend-FinishZone-
NoChange.sh

Case 2: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSF:Full state, no change shall be made to the zone state

ZNS_05.03.04_ZoneMgmtSend-FinishZone-
IgnoreSLBA.sh

Case 4: If the Select All bit is set to ‘1’, then the SLBA field shall be ignored
and all zones that are in the ZSIO:Implicitly Opened state, the ZSEO:Explicitly
Opened state, or the ZSC:Closed state shall be transitioned to the ZSF:Full
state, and the command completes successfully

ZNS_05.04.01_ZoneMgmtSend-OpenZone.sh Case 1: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSE:Empty state, the ZSIO:Implicitly Opened state or the
ZSC:Closed state, the zone should be transitioned to the ZSEO:Explicitly
Opened state

ZNS_05.04.02_ZoneMgmtSend-OpenZone-
NoChange.sh

Case 2: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSEO:Explicitly Opened state, no change shall be made to
the zone state

ZNS_05.04.03_ZoneMgmtSend-OpenZone-
InvalidTransition.sh

Case 3: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSF:Full state, the ZSRO:Read Only state or the ZSO:Offline
state, the command shall be aborted with a status code of Invalid Zone State
Transition

ZNS_05.04.04_ZoneMgmtSend-OpenZone-
IgnoreSLBA.sh

Case 4: If the Select All bit is set to ‘1’, then the SLBA field shall be ignored
and all zones that are in the ZSC:Closed state should be transitioned to the
ZSEO:Explicitly Opened state. If the operation causes the the number of
Open Resources to exceed the value specified by the Maximum Open
Resources field (refer to section 2.5), then the command shall be aborted
with a status code of Too Many Open Zones, and no zone state transitions
shall occur

ZNS_05.05.01_ZoneMgmtSend-ResetZone.sh Case 1: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSIO:Implicitly Opened state, the ZSEO:Explicitly Opened
state, the ZSC:Closed state, or the ZSF:Full state, the specified zone shall be
transitioned to the ZSE:Empty state

ZNS_05.05.02_ZoneMgmtSend-ResetZone-
NoChange.sh

Case 2: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSE:Empty state, no change shall be made to the zone
state

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 14

ZNS_05.05.04_ZoneMgmtSend-ResetZone-
IgnoreSLBA.sh

Case 4: If the Select All bit is set to ‘1’, then the SLBA field shall be ignored
and each zone that is in the ZSIO:Implicitly Opened state, the ZSEO:Explicitly
Opened state, the ZSC:Closed state, or the ZSF:Full state shall be transitioned
to the ZSE:Empty state

ZNS_05.05.05_ZoneMgmtSend-ResetZone-
ZoneDescriptor.sh

Case 5:
1. Create a zone
2. Issue Reset Zone command
3. Verify the following:
If the command completes successfully, then the Zone Descriptor of each
affected zone shall:
a) set the Write Pointer zone attribute to the ZSLBA of the zone; and
b) clear the following zone attribute bits to ‘0’:
 a) Zone Descriptor Extension Valid;
 b) Finish Zone Recommended;
 c) Reset Zone Recommended; and
 d) Zone Finished by Controller

ZNS_05.06.03_ZoneMgmtSend-OfflineZone-
InvalidTransition.sh

Case 3: If the Select All bit is cleared to ‘0’, and the zone specified by the
SLBA field is in the ZSE:Empty state, the ZSIO:Implicitly Opened state, the
ZSEO:Explicitly Opened state, the ZSC:Closed state, or the ZSF:Full state, the
command shall be aborted with a status code of Invalid Zone State Transition

ZNS_05.07.01_ZoneMgmtSend-
SetZoneDescExt.sh

Case 1: If the Select All bit is cleared to ‘0’ and the zone specified by the
SLBA field is in the ZSE:Empty state, the zone should be transitioned to the
ZSC:Closed state

ZNS_05.07.02_ZoneMgmtSend-
SetZoneDescExt-InvalidTransition.sh

Case 2: If the Select All bit is cleared to ‘0’ and the zone specified by the
SLBA field is in any state other than the ZSE:Empty state, the command shall
be aborted with a status code of Invalid Zone State Transition

ZNS_05.07.03_ZoneMgmtSend-
SetZoneDescExt-InvalidField.sh

Case 3: If the Select All bit is set to ‘1’, then the command shall be aborted
with a status Invalid Field in Command

ZNS_05.07.04_ZoneMgmtSend-
SetZoneDescExt-DataBuffer.sh

Case 4: On successful command completion, the Zone Descriptor Extension
of the zone shall be set to the data in the data buffer

ZNS_05.08.01_ZoneMgmtSend-ErrorCodes.sh Case 1: Invalid Zone State Transition - verify this error code can be returned

ZNS_05.08.02_ZoneMgmtSend-ErrorCodes-
ZoneCapChanged-Set.sh

Case 2: Zone Capacity Changed bit set to 1 - verify the zone capacity has
changed due to this command. The host should read the Zone Descriptor
data structure for the zone specified by the SLBA field.

ZNS_05.08.03_ZoneMgmtSend-ErrorCodes-
ZoneCapChanged-NotSet.sh

Case 3: Zone Capacity Changed bit set to 0 - verify the zone capacity has not
changed due to this command

ZNS_06.01.01_ZoneMgmtRcv-
ReportZonesPartial-ZRA-0h.sh

Case 1: ZRA Specific field = 0h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.01.02_ZoneMgmtRcv-
ReportZonesPartial-ZRA-1h.sh

Case 2: ZRA Specific field = 1h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.01.03_ZoneMgmtRcv-
ReportZonesPartial-ZRA-2h.sh

Case 3: ZRA Specific field = 2h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.01.04_ZoneMgmtRcv-
ReportZonesPartial-ZRA-3h.sh

Case 4: ZRA Specific field = 3h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.01.05_ZoneMgmtRcv-
ReportZonesPartial-ZRA-4h.sh

Case 5: ZRA Specific field = 4h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.01.06_ZoneMgmtRcv-
ReportZonesPartial-ZRA-5h.sh

Case 6: ZRA Specific field = 5h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.01.09_ZoneMgmtRcv-
ReportZonesPartial-ZRA-Rsvd.sh

Case 9: ZRA Specific field = 8h to FFh - verify command fails, likely with
INVALID_FIELD

ZNS_06.02.01_ZoneMgmtRcv-ReportZonesFull-
ZRA-0h.sh

Case 1: ZRA Specific field = 0h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.02.02_ZoneMgmtRcv-ReportZonesFull-
ZRA-1h.sh

Case 2: ZRA Specific field = 1h - verify all zones are listed in ascending order
based on ZSLBA value

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 15

ZNS_06.02.03_ZoneMgmtRcv-ReportZonesFull-
ZRA-2h.sh

Case 3: ZRA Specific field = 2h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.02.04_ZoneMgmtRcv-ReportZonesFull-
ZRA-3h.sh

Case 4: ZRA Specific field = 3h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.02.05_ZoneMgmtRcv-ReportZonesFull-
ZRA-4h.sh

Case 5: ZRA Specific field = 4h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.02.06_ZoneMgmtRcv-ReportZonesFull-
ZRA-5h.sh

Case 6: ZRA Specific field = 5h - verify all zones are listed in ascending order
based on ZSLBA value

ZNS_06.02.09_ZoneMgmtRcv-ReportZonesFull-
ZRA-Rsvd.sh

Case 9: ZRA Specific field = 8h to FFh - verify command fails, likely with
INVALID_FIELD

ZNS_06.05.01_ZoneMgmtRcv-ReportZones-
After-NSSR.sh

Zone states change or not after NSSR

ZNS_06.05.02_ZoneMgmtRcv-ReportZones-
After-FLR.sh

Zone states change or not after FLR

ZNS_06.05.03_ZoneMgmtRcv-ReportZones-
After-Controller-Reset.sh

Zone states change or not after controller reset

ZNS_06.05.04_ZoneMgmtRcv-ReportZones-
After-Conventional-Reset.sh

Zone states change or not after conventional reset

ZNS_06.05.05_ZoneMgmtRcv-ReportZones-
After-Power-Cycle.sh

Zone states change or not after power cycle

ZNS_06.05.06_ZoneMgmtRcv-ReportZones-
After-Link-Cycle.sh

Zone states change or not after link up/down

ZNS_06.03.01_ZoneMgmtRcv-
ExtReportZonesPartial-ZRA-0h.sh

Case 1: ZRA Specific field = 0h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.03.02_ZoneMgmtRcv-
ExtReportZonesPartial-ZRA-1h.sh

Case 2: ZRA Specific field = 1h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.03.03_ZoneMgmtRcv-
ExtReportZonesPartial-ZRA-2h.sh

Case 3: ZRA Specific field = 2h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.03.04_ZoneMgmtRcv-
ExtReportZonesPartial-ZRA-3h.sh

Case 4: ZRA Specific field = 3h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.03.05_ZoneMgmtRcv-
ExtReportZonesPartial-ZRA-4h.sh

Case 5: ZRA Specific field = 4h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.03.06_ZoneMgmtRcv-
ExtReportZonesPartial-ZRA-5h.sh

Case 6: ZRA Specific field = 5h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.03.09_ZoneMgmtRcv-
ExtReportZonesPartial-ZRA-Rsvd.sh

Case 9: ZRA Specific field = 8h to FFh - verify command fails, likely with
INVALID_FIELD

ZNS_06.04.01_ZoneMgmtRcv-
ExtReportZonesFull-ZRA-0h.sh

Case 1: ZRA Specific field = 0h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.04.02_ZoneMgmtRcv-
ExtReportZonesFull-ZRA-1h.sh

Case 2: ZRA Specific field = 1h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.04.03_ZoneMgmtRcv-
ExtReportZonesFull-ZRA-2h.sh

Case 3: ZRA Specific field = 2h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.04.04_ZoneMgmtRcv-
ExtReportZonesFull-ZRA-3h.sh

Case 4: ZRA Specific field = 3h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.04.05_ZoneMgmtRcv-
ExtReportZonesFull-ZRA-4h.sh

Case 5: ZRA Specific field = 4h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.04.06_ZoneMgmtRcv-
ExtReportZonesFull-ZRA-5h.sh

Case 6: ZRA Specific field = 5h - verify all zones are listed in ascending order
based on ZSLBA value, or INVALID_FIELD is returned

ZNS_06.04.09_ZoneMgmtRcv-
ExtReportZonesFull-ZRA-Rsvd.sh

Case 9: ZRA Specific field = 8h to FFh - verify command fails, likely with
INVALID_FIELD

ZNS_07.01.01_ZoneAppend.sh Case 1: Verify command is successful

ZNS_07.01.02_ZoneAppend-InvalidField-1.sh Case 2: If the zone which the Zone Append command specifies is not of zone
type Sequential Write Required, then the command shall be aborted with a
status code of Invalid Field in Command

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 16

ZNS_07.01.03_ZoneAppend-InvalidField-2.sh Case 3: If the ZSLBA field in the Zone Append command does To Be Donet
specify the lowest logical block for a zone, then the command shall be
aborted with a status code of Invalid Field in Command

ZNS_07.03.01_ZoneAppend-
ZoneBoundaryError.sh

Case 1: Zone Boundary Error - verify this error code can be returned

ZNS_07.03.02_ZoneAppend-ZoneFull.sh Case 2: Zone Is Full - verify this error code can be returned

ZNS_07.03.05_ZoneAppend-
TooManyActiveZones.sh

Case 5: Too Many Active Zones - verify this error code can be returned

ZNS_07.03.06_ZoneAppend-
TooManyOpenZones.sh

Case 6: Too Many Open Zones - verify this error code can be returned

4.2 TP4056 Qualification

TP4056 adds support for namespace types. SANBlaze has developed 22 scripts to cover the TP4056
qualification.

Script Name Test Description

ZNS_03.01.01_RegCAP-CSS_RegCC-CSS.sh Offset 0h: CAP – Controller Capabilities
Offset 14h: CC – Controller Configuration
1. Get bits 37 & 43 of CAP.CSS, report values to user
2. Get bits 06:04 of CC.CSS, report to user. Based on bits 37
& 43 of CAP.CSS, CC.CSS value should make sense.

ZNS_01.02.01_GetFeatures.sh 1. Do Get Features for FID=19h and verify it's successful

ZNS_01.03.01_SetFeatures.sh 1. Do Set Features for FID=19h and verify it's successful

ZNS_01.01.04_IdentifyNamespace.sh
ZNS_01.01.05_IdentifyNamespaceIDs.sh
ZNS_01.01.06_IdentifyNSIdentDescript.sh
ZNS_01.01.07_IdentifyNVMSetList.sh
ZNS_01.01.08_IdentifyZNSNamespaceIDs.sh
ZNS_01.01.09_IdentifyAllocatedNSIDs.sh
ZNS_01.01.10_IdentifyAllocatedNS.sh
ZNS_01.01.11_IdentifyAttachContIDs.sh
ZNS_01.01.12_IdentifyControllerIDs.sh
ZNS_01.01.13_IdentifyPrimaryContCap.sh
ZNS_01.01.14_IdentifySecondaryContList.sh
ZNS_01.01.15_IdentifyNSGranularityList.sh
ZNS_01.01.16_IdentifyUUIDList.sh
ZNS_01.01.17_IdentifyDomainList.sh
ZNS_01.01.18_IdentifyEnduranceGroupList.sh
ZNS_01.01.19_IdentifyZNSAllocatedNSIDs.sh
ZNS_01.01.1A_IdentifyZNSAllocatedNS.sh
ZNS_01.01.1B_IdentifyIOCommandSet.sh

1. Do Identify for each supported CNS with CSI=2h (zoned NS)
and verify it's successful

ZNS_04.01.80_ErrorCodes-GenericCmd-80h.sh Generic Command Status Definition
1. Issue a command in order to have the specific error code
returned
2. Repeat for each applicable error code

4.3 TP4076 Qualification

TP4076 defines Zoned Random Write Area (ZRWA) and the associated commit operations. SANBlaze
developed 26 scripts to cover the TP4076 qualification.

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 17

Script Name Test Description

ZNS_11.01.01_IdentifyZNSNamespace.sh Identify Namespace Data Structure (CNS 05h). Report the values for the
ZRWA fields

ZNS_11.01.02_IdentifyZNSController.sh Identify Controller Data Structure (CNS 06h). Report the values for the
ZRWA fields

ZNS_11.02.01_CommitZoneImplicit.sh Case 1:
1. Create zone with ZRWA
2. Get write pointer value
3. Do writes and implicit commit
4. Verify write pointer value changed appropriately

ZNS_11.02.02_CommitZoneImplicit-
NotMultipleZRWACG.sh

Case 2: The number of logical blocks to be committed doesn't have to be
a multiple of Random Write Area Commit Granularity (ZRWACG). If the
amount of data to be committed is not an integral multiple of ZRWACG
but meet MDTS and write alignment requirement, then the controller
shall pass in this command and WP move as expected.

ZNS_11.02.05_CommitZoneImplicit-
NotInRange.sh

Case 5:
The controller shall abort write operations that specify a Starting LBA
field that is not within the ZRWA or the ICR range with a status code of
Zone Invalid Write

ZNS_11.02.06_CommitZoneImplicit-
NoWPChange.sh

Case 6:
1. Create zone with ZRWA
2. Get write pointer value
3. Do writes but no implicit commit
4. Transition zone to ZSF and verify write pointer value didn't change
when number of LBAs written is not multiple of ZRWACG but that data
was written (the WP may/shall? change if the number of LBAs written is
multiple of ZRWACG although the WP may be undefined value when in
ZSF state).

ZNS_11.03.01_CommitZoneExplicit.sh Case 1:
1. Verify explicit commit is supported
2. Create zone with ZRWA
3. Get write pointer value
4. Do writes and explicit commit
5. Verify write pointer value changed appropriately

ZNS_11.03.02_CommitZoneExplicit-
NotMultipleZRWACG.sh

Case 2: The number of logical blocks to be committed shall be a multiple
of Random Write Area Commit Granularity (ZRWACG). if the amount of
data to be committed is not an integral multiple of ZRWACG, then the
controller may <Ed Note: shall?> abort the command with a status of
Invalid Field in Command

ZNS_11.03.03_CommitZoneExplicit-
NotOpened-NoZRWA.sh

Case 3: When a Commit Zone Send Zone Action is requested, if the
specified zone is not:
a) in the ZSEO:Explicitly Opened or the ZSIO:Implicitly Opened state; and
b) associated with a ZWRA,
then the controller shall fail the command with an error status of Invalid
Zone Operation Request

ZNS_11.03.04_CommitZoneExplicit-SelectAll-
1.sh

Case 4: If the Select All bit is set to ‘1’, the command shall abort the
command with status Invalid Field in Command

ZNS_11.03.05_CommitZoneExplicit-
CrossZRWABoundary.sh

Case 5: The range to be committed shall not cross the ZRWA boundary.
If the Commit Zone Send Zone Action operation attempts to cross the
ZRWA boundary, then the command shall be aborted with a status code
of Zone Boundary Error

ZNS_11.03.06_CommitZoneExplicit-
NoWPChange.sh

Case 6:
1. Create zone with ZRWA
2. Get write pointer value
3. Do writes but no explicit commit
4. Transition zone to ZSF and verify write pointer value didn't change but
that data was written

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 18

ZNS_11.04.01_ZoneMgmtSend-ZRWAA-1.sh Case 1: If the Zone Send Action (ZSA) field specifies Open Zone and no
ZRWA is currently associated with this zone:
• If this bit is set to ‘1’ and If a ZRWA resource is available, then a ZRWA
shall be allocated to this zone upon transitioning to the ZSEO:Explicitly
Opened state if:
o The zone is in the ZSE:Empty state; or
o The write pointer is on a Zone Random Write Area Commit Granularity
boundary and the zone is in the ZSIO:Implicitly Opened state

ZNS_11.04.02_ZoneMgmtSend-ZRWAA-0.sh Case 2: If the Zone Send Action (ZSA) field specifies Open Zone and no
ZRWA is currently associated with this zone:
• If this bit is cleared to ‘0’, then no ZRWA shall be allocated to this zone
upon transitioning to the ZSEO:Explicitly Opened state.

ZNS_11.04.03_ZoneMgmtSend-ZRWA-
Remove-Full.sh

Case 3:
1. Allocate ZRWA
2. Transition zone to ZSF:Full
3. Verify ZRWA is removed

ZNS_11.04.04_ZoneMgmtSend-ZRWA-
Remove-Empty.sh

Case 4:
1. Allocate ZRWA
2. Transition zone to ZSE:Empty
3. Verify ZRWA is removed

ZNS_11.04.07_ZoneMgmtSend-ZRWAA-
Ignore.sh

Case 7: If the Zone Send Action (ZSA) field specifies Open Zone, the
ZRWAA bit is set to 1, and a ZRWA is currently associated with this zone,
the request to allocate a ZRWA resource shall be ignored

ZNS_11.04.08_ZoneMgmtSend-ZRWAA-1-
InvalidZoneStateTransition.sh

Case 8: If the Zone Send Action (ZSA) field specifies Open Zone, the
ZRWAA bit is set to 1, no ZRWA is currently associated with this zone,
and the zone is in the ZSEO:Explicitly Opened state , then the controller
shall abort the command with a status of Invalid Zone State Transition

ZNS_11.04.09_ZoneMgmtSend-ZRWAA-0-
InvalidZoneStateTransition.sh

Case 9: If the Zone Send Action (ZSA) field specifies Open Zone, the
ZRWAA bit is set to 0, and a ZRWA is currently associated with this zone,
then the controller shall abort the command with a status of Invalid Zone
State Transition

ZNS_11.04.10_ZoneMgmtSend-ZRWA-
NotCreated.sh

Case 10: Set ZSA to anything but Open Zone and verify ZRWA isn't
created

ZNS_11.05.01_ZoneMgmtRcv-ZRWAA-0.sh Case 1:
1. Create zone
2. Do Zone Management Receive
3. Verify ZRWAA is 0

ZNS_11.05.02_ZoneMgmtRcv-ZRWAA-1.sh Case 2:
1. Create zone and setup ZRWA
2. Do Zone Management Receive
3. Verify ZRWAA is 1

ZNS_11.06.02_ZRWA_Associate_More_Than_
One_Zone-Fails.sh

Case 2:
1. Create one ZRWA almost the end of current zone and try to associate
with next zone.
2. Verify it fails

ZNS_11.06.03_ZRWA-VerifyWrites.sh Case 3:
1. Create one ZRWA and associate with zone.
2. Write data to it with pattern 1
3. Verify pattern 1 was written
4. Write data to it with pattern 2
5. Verify pattern 2 was written

ZNS_11.06.05_ZRWA-StartLBALessThanWP.sh Case 5: If a write operation specifies a Starting LBA that is less than the
write pointer, then the controller shall abort the command with a status
code of Zone Invalid Write

ZNS_11.07.02_ZRWA-WritePointerMisalign.sh Case 2: If allocation of a ZRWA fails due to write pointer misalignment
(refer to Figure 30, ZRWAA field definition), then the command shall fail
with status Zone Random Write Area Allocation Failed

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 19

4.4 I/O and Others

SANBlaze has developed 4 I/O scripts and 5 other scripts to run write/read/compare tests across all
zones to ensure data integrity, as well as check I/O performance with a specific number of threads and
transfer sizes.

Script Name Test Description

ZNS_10.01.01_RunIO.sh Runs I/O for a few seconds, reports data

ZNS_10.01.02_RunIO.sh Runs I/O with MOR number of threads and cover all zones, reports data

ZNS_10.01.03_RunIO.sh Runs Write and Read operation with different number of threads (<=MOR
number of threads or max at 256 threads), walk through all different transfer
size, reports data

ZNS_10.01.04_RunIO.sh Runs I/O (read/write/compare) with MOR number of threads and weighted round
robin I/O queues like auto, round robin, urgent, high priority, medium priority
and low priority.

ZNS_08.01.01_MAR-MOR-Verify.sh Do zone management send and receive and verify MOR <= MAR

ZNS_08.01.02_MAR-MOR-
NumZonesZSEO.sh

Do Zone Management Send with ZSA=3h and get number of zones with state
ZSEO

ZNS_08.01.03_MAR-MOR-
TooManyActiveZones.sh

Test for ZONE_TOO_MANY_ACTIVE

ZNS_09.01.01_Transition-ZSE-ZSIO.sh Transition from ZSE to ZSIO

ZNS_09.01.02_Transition-ZSC-ZSIO.sh Transition from ZSC to ZSIO

5. ZNS Qualification with SANBlaze sb_cert

5.1 Choose ZNS Scripts to Run

You can run the ZNS suite from SANBlaze SBExpress Manager GUI under sb_cert as follows:

Figure 1: ZNS Scripts Selection

We categorized all 175 ZNS scripts at 3 levels. With the Level 1 scripts, we expect all ZNS drives to pass.
With Level 2 scripts, we expect consumer ZNS drives to pass some of them but enterprise ZNS drives to
pass all. Level 3 scripts are the most challenging to pass and even enterprise ZNS drives may not pass all
Level 3 scripts.

After choosing the ZNS scripts to run, click the AddSBCert button and the selected scripts will be added
into the SBExpress test window ready to run:

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 20

Figure 2: ZNS Scripts Added

5.2 Start Testing

Once all selected ZNS scripts have been added into SBExpress test window, click Start to begin testing.
The GUI will show the progress of the running tests as follows:

Figure 3: ZNS scripts running

5.3 Test Results Review

You can view the test results “on the fly” by clicking the script name in the GUI above, or generate the
results report by clicking the Report button, and then all checked script test results will show up in one
HTML report file as follows:

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 21

Figure 4: ZNS Scripts Results Report

You can click the Detail button at the end of each row to display or hide the detailed test results.

Summary

In summary, SANBlaze supports all of the Zoned Admin Command Sets and Zoned I/O Command Sets as
specified and defined in the latest spec (TP 4053 2020.06.15, TP4056 2020.06.15, TP4076 2020.08.04).
SANBlaze provides written scripts that can be run right of the box in our SBExpress GUI, as well as run
through our command line interface, XML API interface, and Python wrapped API interface for test
automation. SANBlaze is proud to provide a high quality and simple way to test and qualify ZNS for your
SSD drives.

